miércoles, 5 de diciembre de 2012


nJohn Pasta y Stanislam Ulam (FPU), llevaran a cabo experimentos numéricos en cadenas de osciladores con potenciales de interacción no armónicos. Pensaron que si la energía se colocaba en el modo de oscilación más bajo (modo de longitud de onda más largo), eventualmente tomaría lugar la equipartición de la energía. El tiempo de relajación para que esto ocurriera proporcionaría una medida del coeficiente de difusión. Para la sorpresa de Fermi y sus colegas la energía del sistema no se "termalizó". Sólo una fracción de la energía se repartió entre los demás modos y en, un tiempo posterior, largo pero finito, casi la misma cantidad de energía de volvía a concentrar en el modo más bajo. Este se conoce en mecánica como un fenómeno de recurrencia, similar al que se observa en el movimiento de dos péndulos acoplados, en los que la energía de oscilación permanece en un modo cierto tiempo y después pasa a otro. Resulta que el tiempo de recurrencia para un número suficientemente grande de osciladores acoplados excede cualquier tiempo de observación física relevante y resulta en una conductividad térmica finita.
nLa explicación de este descubrimiento permaneció en un misterio hasta que Norman Zabusky y Martin Kruskal comenzaron a estudiar nuevamente este sistema a principios de 1960. El hecho de que sólo se "activaran" los modos de orden más bajo (longitud de onda larga), les condujo a proponer una aproximación continua del sistema y estudiar la ecuación diferencial parcial llamada KdV.
nEsta ecuación había sido obtenida en 1885 por D.J. Korteweg y Gustav de Vries en la descripción de la propagación de ondas de longitud de onda larga, en aguas poco profundas. A partir de un estudio detallado de la ecuación, Norman Zabusky y Kruskal hallaron que ésta admite soluciones estables en el sentido de que las ondas pueden interactuar y preservar sus perfiles y velocidades iniciales después de la colisión.

No hay comentarios:

Publicar un comentario